Il nostro sito usa i cookie per poterti offrire una migliore esperienza di navigazione. I cookie che usiamo ci permettono di conteggiare le visite in modo anonimo e non ci permettono in alcun modo di identificarti direttamente. Clicca su OK per chiudere questa informativa, oppure approfondisci cliccando su "Cookie policy completa".

DIAMANTI E RETI QUANTISTICHE: UN QUBIT è PER SEMPRE

circuiti fotonici laser quanti cnr

Vanno avanti le esplorazioni nel 'paese dei quanti', secondo una espressione utilizzata per il titolo italiano di un libro dello scienziato Robert Gilmore, che a scopo divulgativo spiega le basi della teoria quantistica. A livello ben più elevato, proseguono quindi le sperimentazioni a scopo industriale.

Le reti quantistiche si basano su sistemi connessi l’uno all’altro per il trasferimento di informazioni, sfruttando proprietà quanto-meccaniche come l’entanglement e la sovrapposizione di stati. La capacità di modificare la luce a livello di singolo fotone in un dispositivo integrato è un requisito fondamentale per sviluppare la nuova generazione di reti quantistiche: questo consentirà di realizzare computer avanzati per risolvere sempre più rapidamente alcuni problemi complessi, ma anche di utilizzare canali di comunicazione sicuri per trasferire informazioni criptate.

Oggi, grazie ad una collaborazione tra i gruppi di ricerca guidati da Shane Eaton dell’Istituto di fotonica e nanotecnologie del Consiglio nazionale delle ricerche (Cnr-Ifn) di Milano e da Alexander Kubanek dell’Università di Ulm, è stato sviluppato un metodo di fabbricazione innovativo ed ibrido per realizzare circuiti fotonici utilizzando il diamante: un passo essenziale per sviluppare bit quantistici (qubit), l’elemento base dell’informazione quantistica.

“Nel diamante sono presenti, e possono essere opportunamente ingegnerizzati, dei difetti reticolari in grado di essere utilizzati come qubit”, spiega il ricercatore del Cnr-Ifn Shane Eaton. “Si tratta dei centri di colore, posizioni reticolari dove è presente un’impurezza e manca un atomo di carbonio, e nei quali è possibile codificare, controllare e manipolare l’informazione quantistica sotto forma di qubit. Tale particolare morfologia –  e la presenza di questi difetti – rende il diamante un candidato promettente per le tecnologie quantistiche”.

Insieme a colleghi dell’Università di Ulm, il team italiano ha dimostrato che è possibile collocare con precisione qubit basati su centri silicio-vacanza all’interno di circuiti fotonici formati mediante laser in diamante.

“Tali risultati nascono dalla prima dimostrazione (Eaton, Nature Scientific Reports, 2016) che i laser a femtosecondi - ossia laser che emettono impulsi brevissimi e ravvicinati, essendo un femtosecondo un milionesimo di miliardesimo di secondo- possono creare nel diamante connessioni fotoniche, che sono i mattoncini fondamentali necessari per il calcolo quantistico”, spiega Eaton. “Un altro ingrediente fondamentale è, poi, realizzare qubit: con questa nuova tecnica abbiamo sviluppato un chip integrato in diamante, in grado di ingegnerizzare la luce a livello di singolo fotone. Il prossimo passo sarà fabbricare un circuito fotonico tridimensionale per rendere possibili sistemi per il calcolo quantistico di prossima generazione in diamante, tali da consentire l’elaborazione di una quantità notevole di dati contemporaneamente, con estrema velocità”, precisa il ricercatore.

L’importanza di queste tematiche, sia a livello fondamentale che tecnologico, è stata recentemente comprovata anche dall’assegnazione del premio Nobel per la Fisica 2022 conferito ad Alain Aspect, John Clauser e Anton Zeilinger: questi risultati assumono quindi grande rilevanza per il futuro sviluppo di tecnologie quantistiche all’avanguardia.

Questo lavoro è stato reso possibile grazie al programma Marie-Skłodowska-Curie innovative training network (ITN), un finanziamento europeo coordinato da Eaton, con la collaborazione anche della scuola di dottorato del Politecnico di Milano. “Il nostro ITN permette la formazione di 13 promettenti studenti di dottorato, in laboratori europei, sia universitari che industriali, in campi interdisciplinari. In questo caso, la collaborazione con il nostro partner, Università di Ulm, ci ha portato a questa nuova scoperta, che avrà un forte impatto sull’imminente rivoluzione quantistica e sul futuro della computazione”, conclude Eaton.

 

foto1: Un nuovo metodo di fabbricazione ibrido che combina la scrittura mediante laser per creare circuiti fotonici 3D con emettitori quantistici di alta qualità tramite impiantazione con fascio di ioni, per sviluppare reti quantistiche integrate in diamante.
 
foto2: Architettura utilizzata per ingegnerizzare la luce a livello di singolo fotone, utilizzando un circuito fotonico quantistico in diamante formato tramite fabbricazione laser e fascio di ioni. Il numero di stati a destra rappresentano gli stati fotonici modificati da un centro silicio-vacanza integrato in una guida d’onda in diamante. 

 

“Super-Poissonian Light Statistics from Individual Silicon Vacancy Centers Coupled to a Laser-Written Diamond Waveguide”.
Michael K. Koch, Michael Hoese, Vibhav Bharadwaj, Johannes Lang, John P. Hadden, Roberta Ramponi, Fedor Jelezko, Shane M. Eaton, and Alexander Kubanek; Doi: 10.1021/acsphotonics.2c00774

Tags: CNR diamanti Politecnico di Milano dicembre 2022

© 2017 Ciuffa Editore - Via Rasella 139, 00187 - Roma. Direttore responsabile: Romina Ciuffa